
8-bit
Microcontroller

Application
Note

Rev. 1483A–09/99
AVR030: Getting Started with C for AVR

Features
• How to Open a New Project
• Description of Option Settings
• Linker Command File Examples
• Writing and Compiling the C Code
• How to Load the Executable File Into the

STK200 Starter Kit

Introduction
The purpose of this application note is to
guide new users through the initial set-
tings of the Embedded Workbench from
IAR and compile a simple C program.
The application note shows how to set
up the compiler to generate an execut-
able hex file and how to download this
f i le in to the dev ice. The example
described in this application note is writ-
ten fo r the AT90S2313 us ing the
STK200 starter kit or alternatively an
emulator.

Preparations
The IAR compiler is shipped with a hard-
ware lock dongle. This dongle must be
connected to the parallel port. Before the
dongle can be used, a windows driver
must be insta l led. Please see the
instructions included with the dongle for
how to install the windows driver.

Creating a New Project
When the preparations are ready, open
the IAR Embedded Workbench. To cre-
ate a new project, go to the “File” menu
and select “New” and then “Project”. The
dialog box shown in Figure 1 appears. In
this dialog box, f irst make a folder
“C:\AVR030” and then type “Getting
Started” in the “File name” window. This
project should be created in the in the
“C:\AVR030” folder.

Figure 1. Create the Project File
1

Settings in “Project-> Options”
Before any code can be compiled and linked, the options
for the compiler and linker must be set up correctly. By
default, it is possible to select two different targets in the
project window. The two selections are target “Release”,
and target “Debug”. The debug target is normally used
when running the code in a simulator or emulator, while the
release target is normally used when producing a code that
can be executed in a real device. The settings done in the
“Project->Options” menu are individual for both targets.
Thus, it is necessary to set all options twice when using
both targets. The main difference between the two targets
is the format of the output file.

It is also possible to add more targets which options can be
customized to a specific AVR (simulated, emulated or the
real device). Common and different source files may be
included in the different targets. A folder will be created for
each target when linked for the first time.

In this application note, the goal is to make a file that can
run in the AT90S2313 device. To do this, the release target
will be used. Select the “Release” target in the “Getting
started.prj” window as shown in Figure 2. Then select the
“Project->Options” menu. The window shown in Figure 3
will pop up.

Figure 2. Selecting Target Release

General Settings
In the “General” category in the “Options” dialog box, the
type of processor used is selected. It is necessary to
change two settings, “Processor Configuration” and “Mem-
ory Model”. Please refer to Table 1 for the correct selection
for these choices for different AVR microcontrollers.

“Memory model tiny” uses a one byte data pointer, thus
allowing a maximum of 256 bytes data. “Memory model

small” uses a two byte data pointer, thus allowing up to 64
Kilobytes data. For the -v0 and -v2 “Processor Configura-
tion only the Memory model tiny” may be used.

In our example, the factory settings should be used, as
shown in Figure 3.
AVR0302

AVR030
Figure 3. General Options Dialog

Table 1. Device Specific Settings

AVR Device Processor Configuration Memory Model XCL file

AT90S2313 V0 (maximum 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2323 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2333 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2343 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S4414 V1 (max 64 Kbyte data, 8K code)
Small

4F256S.xcl
4F64KS.xcl

AT90S4433 V0 (max 256 byte data, 8K code) Tiny 4F128S.xcl

AT90S4434 V1 (max 64K byte data, 8K code) Small 4F256S.xcl

AT90S8515 V1 (max 64K ‘byte data, 8K code)
Small

8F512S.xcl
8F64KS.xcl

AT90S8534 V1 (max 64K byte data, 8K code) Small 8K256S.xcl

AT90S8535 V1 (max 64K byte data, 8K code) Small 8F512S.xcl
3

ICCA90 Settings
To get the dialog options for the specific settings of the
Compiler, click on the “ICCA90” line in the “Category” tab.

When using the memory model tiny, the factory settings are
OK.

If the memory model small is selected, it is necessary to
check the “Writable strings, constants” checkbox. If this is
not done, variables defined as const will not be compiled
correctly. Figure 4 describes the settings when the memory
model small is selected.

The compiler may be optimized for code size or execution
speed. The type and level of optimization may be set in the
“Optimization” group in Figure 4. Only one type of optimiza-
tion may be specified for a single target. Note that if a high
level of optimization is used, the user may not be able to
debug the code. The code will be fully debuggable with

optimization level 3 (default for both types of optimization)
or lower.

Also note that it is strongly recommended that the “Embed
source” code checkbox in the “Debug” tab is checked if a
debugging target, i.e. simulation or emulation, is used. This
will let you debug on the assembly level rather than on the
C language level. In AVR Studio you will also be able to
see exactly which assembly code is generated for the indi-
vidual C statements.

On the “List” tab, the user is able to determine whether a
listing is generated, and the information included in this list-
ing. The “Insert mnemonics” option will, if checked, cause
the compiler to include the generated assembly lines in the
listing.

ATmega103 V3 (max 64K byte data, 128K code)
Small

128F4KS.xcl
128F64KS.xcl

ATmega161 V3 (max 64K byte data, 128K code)
Small

16F1KS.xcl
16F64KS.xcl

ATmega603 V3 (max 64K byte data, 128K code)
Small

64F4KS.xcl
64F64KS.xcl

Table 1. Device Specific Settings (Continued)

AVR Device Processor Configuration Memory Model XCL file
AVR0304

AVR030
Figure 4. ICCA90 Option Settings

AA90 Settings
In the AA90 settings, the options for the assembler can be
changed. Since this application note does not contain any
parts written in assembly, the default settings can be left
unchanged.

XLINK Settings
The linker settings gives the linker instructions for how to
link together the object codes from the different Compiler,
Assembler and Library modules.

The first thing that needs to be selected is the format of the
output-file the linker is to create. In this application note, the
intention is to generate an “Intel Extended HEX” file which
is recognized by the STK200 starter kit.
5

Figure 5. Selecting Output Format

This is done by selecting the “Output” tab of the “XLINK”
options, and click “Other” in the format session. Select
“Intel-extended” from the output format pull-down menu as
shown in Figure 5. When a debugging target is used, it is
normal to select either “Debug info” or “Debug info with ter-
minal I/O”. “Debug info with terminal I/O” should be used
when simulating or emulating in AVR Studio.

In the “Output” file group it is possible to rename the output-
file. The default name is the same as the project name.

The other thing that has to be changed is the “Linker Com-
mand File” used. To change this, click the “Include” tab,

and in the “XCL file name” bar, click “Override Default” as
shown in Figure 6. Then click the “...” button, and navigate
to the “2F128S.xcl” file attached to this application note.
Here , i t is assumed that the f i le is s tored in the
“C:\AVR030” folder. If other devices than the AT90S2313
are used, select the corresponding “XCL” file from Table 1.
For the devices in Table 1 with possibility to have external
RAM, there are listed two possible “XCL” files in Table 1.
One when using internal RAM only, and one when using
external RAM
AVR0306

AVR030
Figure 6. Selecting the XCL File

The main purpose of the Linker Command File is to define
the code and data segments, which is done in the -Z com-
mand. Note that the size of the Data Stack and the Return
Stack is specified explicitly and may be changed according
to a specific project. The “Linker Command File” will proba-
bly need to be edited for each project. “The Linker

Command Files” attached to this application note must be
considered as a starting point only. Please see the applica-
tion note AVR032: Linker Command Files for the IAR
ICCA90 Compiler for how to modify the Linker Command
File to fit the specific project.

Writing the Source File
When the “Project” options are properly configured, the
next step is to write the source code. This application note
uses a simple program that increments PORTB on which
the eight LEDs are attached. An 8-bit timer is used to gen-
erate a delay between incrementations, making it possible
to see the LEDs flashing.

To open a new source file, select “File->New” and then
select “Source/Text”. In the new window that appears, type
in the text below, and save it as “AVR030.C” by selecting
“Save As” in the “File” menu. Make sure to save the file in
the “C:\AVR030” folder.

Program Listing for AT90S2313

#include <io2313.h>

void initialization(void);

void delay(void);

void initialization(void)
7

{

 DDRB = 0xff; // Set PORTB as output

 TCCR0 = 0x05; // Count clock/1024.

}

void delay(void) //Producing a delay of 65 ms at 4 MHz

{

 while (!(TIFR&0x02)); // Waiting for timer0 overflow flag to be set

TIFR = 0x02; // Clearing overflow flag

}

void main (void)

{

initialization(); //Initialize Pheripherals

while (1) //Forever

 {

 PORTB++; //Increment PORTB

 delay(); //Short delay

 }

}

The program is divided into three parts; initialization, delay
and main-loop. In the initialization part, PORTB is set as
output, and TIMER0 starts to count the main clock divided
by 1024.

In the delay subroutine, the controller waits for the TIMER0
overflow flag to be set, then clears the flag and exits.

In the main-loop, the content in PORTB is incremented,
and a delay is called to make the change on PORTB
visible.
AVR0308

AVR030
Including the Source File in the Project
When the source code is written, it has to be included in the
project. This is done by selecting “Files” from the “Project”
menu. The dialog box shown in Figure 7 appears. Navigate

to the “C:\AVR030” folder, select the file “AVR030.C” by
clicking on it, and select “Add”. Click “Done” to exit the dia-
log box.

Figure 7. Selecting Source-files

Compiling the Code
To compile the code, select “Project -> Make” or press
“F9”. If everything is done correctly, the code compiles and
links with no errors, and an executable HEX code is placed
in the f i le “C : \AVR030\RELEASE\EXE\GETTING
STARTED.A90”.

Loading the File Into the STK200
Starter Kit
To run the code, the file has to be programmed into an
AT90S2313. This application note describes how to load it
to an AT90S2313 in the STK200 starter kit.

The software used by the STK200 is called AVR ISP. The
STK200 dongle must be mounted on the parallel port.
When this is done, a new project can be opened.

A new project is opened by selecting “Project->New
Project” in AVR ISP. Highlight the AT90S2313 from the
device selection menu and click “OK”.

In the “Project Manager” window information about the
project can be typed in, and fuse and lock-bit options can
be set. This is not necessary for this project.

The next step is to load the hex-file into the “Program Mem-
ory” window. To do this, activate this window by clicking on
the title frame of the window. Now go to the “File” menu
and select “Load”. In the dialog box that appears, navigate
to the “AVR030\RELEASE\EXE” folder, and select the
“Getting Started.a90” file.
9

To load the program into the AT90S2313 on the starter kit,
select the “Program->Auto-Program” option. In the “Auto-
Program” dialog box, tag “Reload Files”, Erase device and
Program device. Now click “OK”, and the LEDs on the
starter kit should be counting.

Short Reference

Preparations:

-Install dongle driver

-Create destination folder

Getting Started:

1. File->New->Project

2. Project name and path

3. Highlight release folder in project window

4. Project->Options

5. In the General options, select Processor Configu-
ration and Memory Model according to Table 1

6. In the ICCA90 options, tag “Writable strings, con-
stants” if the Memory Model is small, leave
unchanged if Memory Model is tiny

7. In the XLINK options, select output format “Intel
Extended”

8. In the include-tab of the XLINK options, go to the
“XCL file name” bar and select “Override default”.
Select the XCL-file corresponding to your device
from Table 1

9. Write the source code

10. Add the Source file to the project by selecting
“Project->files” and select the file just written

11. Compile by selecting “Project->make” or by press-
ing “F9”

12. Open AVR ISP and download the hex-file located in
the “avr030\release\exe” folder into the device
AVR03010

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1483A–09/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Preparations
	Creating a New Project
	Settings in “Project-> Options”
	General Settings
	ICCA90 Settings
	AA90 Settings
	XLINK Settings
	Writing the Source File
	Program Listing for AT90S2313

	Including the Source File in the Project
	Compiling the Code
	Loading the File Into the STK200 Starter Kit
	Short Reference
	Preparations:
	Getting Started:

